Abelian exact subcategories closed under predecessors

Ibrahim Assem Departement de Mathématique et Informatique Université de Sherbrooke Sherbrooke, Québec J1K 2R1 CANADA *ibrahim.assem@usherbrooke.ca*

> Manuel Saorín Departamento de Matemáticas Universidad de Murcia, Aptdo. 4021 30100 Espinardo, Murcia SPAIN *msaorinc@um.es*

Abstract

In the category of finitely generated modules over an artinian ring, we classify all the abelian exact subcategories closed under predecessors or, equivalently, all the split torsion pairs with torsion-free class closed under quotients. In the context of Artin algebras, the result is then applied to the left part of the module category and to local extensions of hereditary algebras

1 Introduction

Let A be an Artin algebra, mod_A be its category of right A-modules, and ind_A be a full subcategory of mod_A consisting of a complete set of representatives of the isomorphism classes of indecomposable A-modules. The left part \mathcal{L}_A and the right part \mathcal{R}_A of mod_A were introduced by Happel, Reiten and Smal \emptyset in their study of quasi-tilted algebras ([5]). These have repeatedly proved their usefulness in the study of homological properties of the algebra. Our initial motivation for the present paper was the following question: when is the additive

^{*}The first author gratefully acknowledges partial support from the NSERC of Canada. The second author thanks the D.G.I. of the Spanish Ministry of Science and Technology and the Fundación "Séneca" of Murcia for their financial support

closure $add(\mathcal{L}_A)$ of \mathcal{L}_A an abelian exact subcategory of mod_A ? (see definition below). As our study advanced, we noticed that the particular consideration of \mathcal{L}_A was not essential, and our goal then shifted to classify all the full subcategories $\mathcal{C} \subseteq ind_A$, closed under predecessors, such that $add(\mathcal{C})$ is an abelian exact subcategory of mod_A . This is easily seen to be equivalent to the classification of all split torsion pairs in mod_A , with torsion-free class closed under quotients. In addition, we realized that the restriction to Artin algebras was not necessary and that our classification held in the more general context of (right) artinian rings. The desired classification is given in corollary 2.6 as a direct consequence of our main result, theorem 2.5.

This theorem states that, for a basic and connected right artinian ring A, the existence of such a subcategory \mathcal{C} of ind_A is equivalent to the existence of an isomorphism $A \cong \begin{pmatrix} C & 0 \\ M & B \end{pmatrix}$, where M is a B - C-bimodule which is hereditary injective over C, and such that \mathcal{C} gets identified with ind_C . In case A is an Artin algebra or, more generally, an artinian ring with selfduality, our methods can be dualized to yield a classification of those subcategories $\mathcal{C} \subseteq ind_A$ closed under successors and such that $add(\mathcal{C})$ is an abelian exact subcategory of mod_A . We leave the primal-dual translation to the reader.

The paper is organized as follows. Section 2 is devoted to proving the main theorem, for which we need several equivalent characterizations of the desired subcategories (see Proposition 2.2 below). Section 3 contains applications of the theorem to Artin algebras, in the case where $\mathcal{C} = \mathcal{L}_A$. Thus, we prove that if the quiver of A has no oriented cycles, then $add(\mathcal{L}_A)$ is an abelian exact subcategory of mod_A if and only if A is hereditary (see Corollary 3.2 below). We also prove that if A is a local extension of a hereditary algebra H (by a bimodule $_RM_H$), then $add(\mathcal{L}_A)$ is an abelian exact subcategory of mod_A if, and only if, M_H is injective (see Proposition 3.5).

2 The main theorem

Throughout this section, A is a basic right artinian ring, which we assume connected (that is, indecomposable as a ring). Modules are finitely generated right modules. All subcategories of mod_A or ind_A are assumed closed under isomorphic images. For a full subcategory C of mod_A , we denote by add(C) the full subcategory of mod_A having as objects the direct summands of finite direct sums of modules in C. We also write briefly $X \in C$ to express that X is an object of C. For an A-module M, Gen(M) stands for the full subcategory consisting of those modules which are generated by M, that is, which are quotients of modules in add(M). We refer the reader to [1] and [3][Chapter I] for concepts about artinian rings not specifically defined here.

Given $X, Y \in ind_A$, a **path** from X to Y is a sequence $X = X_0 \xrightarrow{f_1} X_1 \rightarrow \dots \xrightarrow{f_t} X_t = Y$ of non-zero morphisms f_i between indecomposable A-modules. In this case, we say that X is a **predecessor** of Y (and that Y is a **successor** of X). A full subcategory $\mathcal{C} \subseteq ind_A$ is called **closed under predecessors** when every predecessor of a module in C lies in C. When C is closed under predecessors, the direct sum $P = P_C$ of all (indecomposable) projective modules in C is called the **supporting projective** module of C.

We recall that a pair $(\mathcal{T}, \mathcal{F})$ of full subcategories of mod_A is called a **torsion pair**, when it satifies the following two conditions: i) a module X_A is in \mathcal{T} if, and only if, $Hom_A(X, F) = 0$ for all $F \in \mathcal{F}$, and ii) a module X_A is in \mathcal{F} if, and only if, $Hom_A(T, X) = 0$ for all $T \in \mathcal{T}$. In this case, we have an idempotent subfunctor of the identity $t : mod_A \longrightarrow mod_A$, called the **torsion radical**, such that $X \in \mathcal{T}$ if and only if t(X) = X. The class \mathcal{T} is called the **torsion class**, and the class \mathcal{F} is called the **torsion-free class** of the pair. The pair $(\mathcal{T}, \mathcal{F})$ is called **split** when t(X) is a direct summand of X, for all $X \in mod_A$, or, equivalently, when every indecomposable A-module X either belongs to \mathcal{T} or to \mathcal{F} .

The following lemma is well-known.

Lemma 2.1. Let C be a full subcategory of ind_A . The following assertions are equivalent:

- (1) C is closed under predecessors.
- (2) If $X \in ind_A$ then either $X \in \mathcal{C}$ or $Hom_A(X,Y) = 0$, for all $Y \in \mathcal{C}$.
- (3) $add(\mathcal{C})$ is the torsion-free class of a split torsion pair in mod_A .

In this paper we use the following terminology.

Definition 1. A full subcategory \mathcal{A} of mod_A is said to be an **abelian exact** subcategory, when it is abelian as a category and the inclusion functor $\mathcal{A} \hookrightarrow mod_A$ is exact

It is easily seen that a full subcategory \mathcal{A} is an abelian exact subcategory of mod_A if, and only if, it is closed under kernels and cokernels. In general, a full subcategory can be abelian as a category without being an abelian exact subcategory of mod_A .

Proposition 2.2. Let C be a full subcategory of ind_A closed under predecessors. The following statements are equivalent:

- (1) $add(\mathcal{C})$ is an abelian exact subcategory of mod_A .
- (2) $add(\mathcal{C})$ is closed under cokernels.
- (3) $add(\mathcal{C})$ is closed under quotients.
- (4) For every (indecomposable) projective $P_0 \in \mathcal{C}$, we have $top(P_0) \in \mathcal{C}$.
- (5) C is closed under composition factors.
- (6) $add(\mathcal{C}) = Gen(P)$, where P is the supporting projective module of \mathcal{C} .

Proof. Since C is closed under predecessors, add(C) is closed under submodules and, in particular, under kernels and images. Thus (1) and (2) are clearly equivalent.

(2) is equivalent to (3): Since $add(\mathcal{C})$ is closed under submodules, every quotient of a module in $add(\mathcal{C})$ is the cokernel of a morphism in $add(\mathcal{C})$. Thus (2) implies (3). The reverse implication is trivial.

(3) implies (4): This is clear

(4) implies (5): If $X \in C$, then in the radical filtration $X \supset XJ(A) \supset XJ(A)^2 \supset \dots$ all the terms are direct sums of predecessors of X. Hence, all belong to $add(\mathcal{C})$. Since \mathcal{C} is closed under predecessors, then, for every $k \ge 0$, the projective cover P_k of $XJ(A)^k$ belongs to $add(\mathcal{C})$. The hypothesis 4 implies that $\frac{XJ(A)^k}{XJ(A)^{k+1}} \cong top(P_k)$ belongs to $add(\mathcal{C})$. Since every composition factor of X is direct summand of some $\frac{XJ(A)^k}{XJ(A)^{k+1}}$ the statement 5 follows

X is direct summand of some $\frac{XJ(A)^k}{XJ(A)^{k+1}}$, the statement 5 follows. (5) implies (2): If $f: X \longrightarrow Y$ is a morphism between modules in \mathcal{C} , the hypothesis guarantees that all composition factors of Z = coker(f) lie in \mathcal{C} . In particular, $top(Z) \in add(\mathcal{C})$. Since \mathcal{C} is closed under predecessors, we have $Z \in add(\mathcal{C})$, so that $add(\mathcal{C})$ is closed under cokernels.

(3) implies (6) : Since \mathcal{C} is closed under predecessors, the projective cover of a module $X \in \mathcal{C}$ belongs to $add(\mathcal{C})$ and, consequently, to add(P). Hence $add(\mathcal{C}) \subseteq Gen(P)$. The reverse inclusion follows from the fact that $add(\mathcal{C})$ is closed under quotients.

Since (6) trivially implies (4), the proof is complete.

We recall that an additive full subcategory \mathcal{D} of mod_A is **contravariantly finite** if, for every $X \in mod_A$, there is a morphism $f: D_X \longrightarrow X$ (called a right approximation) such that $D_X \in \mathcal{D}$ and, for any other morphism $g: D \longrightarrow X$, with $D \in \mathcal{D}$, there exists $h: D \longrightarrow D_X$ such that $f \circ h = g$. **Covariantly finite** subcategories are defined dually, and a subcategory is called **functorially finite** if it is both covariantly and contravariantly finite (see [4]).

Corollary 2.3. Let C be a full subcategory of ind_A closed under predecessors such that add(C) is an abelian exact subcategory of mod_A , and let $e \in A$ be an idempotent such that P = eA is (isomorphic to) the supporting projective of C. The following assertions hold:

- (1) $add(\mathcal{C})$ is functorially finite in mod_A
- (2) (Gen((1-e)A), add(C)) = (Gen((1-e)A), Gen(eA)) is the split torsion pair in mod_A having add(C) as torsion-free class.
- (3) The torsion radical t of the above torsion pair is given by t(X) = X(1-e)A, for every $X \in mod_A$
- *Proof.* (1) Every torsion-free class is covariantly finite. By Proposition 2.2(6), $add(\mathcal{C}) = Gen(P)$ is contravariantly finite, the (minimal) right approximation of X being the inclusion $t_P(X) \hookrightarrow X$, where $t_P(X)$ is the trace of P in X, that is, $t_P(X) = \sum_{f \in Hom_A(P,X)} Im(f)$.

- (2) Consider the split torsion pair $(\mathcal{T}, add(\mathcal{C}))$. Since \mathcal{C} is closed under composition factors, an A-module X lies in \mathcal{T} if, and only if, top(X) contains no simple summand from \mathcal{C} , that is, if and only if $top(X) \in Gen((1-e)A)$. This is equivalent to saying that X is generated by (1-e)A.
- (3) t(X) is the (unique) maximal submodule of X belonging to Gen((1-e)A), which is the trace $t(X) = \sum_{f \in Hom_A((1-e)A,X)} Im(f) = X(1-e)A$

We recall that an A-module I is called **hereditary injective** if every quotient of I (or of I^r , with r > 0) is an injective A-module.

Remark 2.4. If $A = \begin{pmatrix} C & 0 \\ M & B \end{pmatrix}$, where M is a B - C-bimodule, then the right A-modules can be viewed as triples (X, Y, φ) , where $X \in \text{mod}_C$, $Y \in \text{mod}_B$ and $\varphi : Y \otimes_B M \longrightarrow X$ is a morphism in mod_C (see [3][Chapter III]). In this case, we may, and shall, identify mod_C with the full subcategory of mod_A having as objects the triples (X, 0, 0), with $X \in \text{mod}_C$.

For any right artinian ring R, we denote by gl.dim(R) the global dimension of R. We are now able to state, and prove, the main result of this paper.

Theorem 2.5. Let A be a basic connected right artinian ring and C be a full subcategory of ind_A . The following assertions are equivalent:

- C is closed under predecessors and add(C) is an abelian exact subcategory of mod_A
- (2) There exists a ring isomorphism $A \cong \begin{pmatrix} C & 0 \\ M & B \end{pmatrix}$ such that M_C is a hereditary injective C-module and $add(\mathcal{C}) \cong mod_C$
- (3) There exists an idempotent $e \in A$ such that eA(1-e) = 0, C consists of those $X \in ind_A$ such that Xe = X and every $Y \in ind_A \setminus C$ is generated by (1-e)A

Further, if this is the case, then $gl.dim(C) = Sup\{pd(X_A) : X \in C\}$

Proof. (1) implies (3): Let $e \in A$ be an idempotent such that eA = P is the supporting projective of C. By proposition 2.2, add(C) = Gen(eA) and, by corollary 2.3, the corresponding split torsion pair is (Gen((1 - e)A, Gen(eA))). Therefore $eA(1 - e) \cong Hom_A((1 - e)A, eA) = 0$ and so XeA = Xe, for all $X \in mod_A$. Hence $X \in add(C)$ if, and only if, X = Xe. The last statement follows from the fact that the torsion pair is split.

(3) implies (1): Since eA(1-e) = 0, we have $Gen(eA) = \{X \in mod_A : X = Xe\}$. The hypothesis (3) says exactly that (Gen((1-e)A), Gen(eA)) =

 $(Gen((1-e)A), add(\mathcal{C}))$ is a split torsion pair. The statement then follow from lemma 2.1 and proposition 2.2

(2) implies (3): Setting $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, we have $1 - e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ so that, clearly, eA(1-e) = 0. The equality $\mathcal{C} = \{X \in ind_A : Xe = X\} = \{X \in ind_A : X(1-e) = 0\}$ follows from the interpretation of mod_C as a full subcategory of mod_A . There remains to prove that $ind_A \setminus \mathcal{C} \subset Gen(1-e)A$). Let $X \notin \mathcal{C}$ be indecomposable. We claim that

$$X(1-e)AeA = X(1-e)A \cap XeA$$

Clearly, we have $X(1-e)AeA \subseteq X(1-e)A \cap XeA$. Conversely, if $x \in X(1-e)A \cap XeA$ then x = xe, due to the equality XeA = Xe. On the other hand, $x = \sum_{1 \le i \le n} y_i(1-e)a_i$, with $a_i \in A$ and $y_i \in X$. But then $x = xe = \sum_{1 \le i \le n} y_i(1-e)a_ie$ belongs to X(1-e)AeA, thus establishing our claim.

The A-module X(1-e)AeA is generated by (1-e)AeA = M which, by hypothesis, is a hereditary injective C-module. Hence, X(1-e)AeA is injective in mod_C , and so we have a decomposition

$$XeA = X(1-e)AeA \oplus X'$$

in mod_C . Considering this decomposition in mod_A via the embedding $mod_C \hookrightarrow mod_A$, we have

$$X = XeA + X(1 - e)A = X(1 - e)AeA + X' + X(1 - e)A = X' + X(1 - e)A$$

But $X' \cap X(1-e)A \subseteq XeA \cap X(1-e)A = X(1-e)AeA$, and so $X' \cap X(1-e)A \subseteq X' \cap X(1-e)AeA = 0$. We thereby get a decomposition

$$X = X' \oplus X(1-e)A$$

in mod_A . Since X_A is indecomposable and $X(1-e) \neq 0$ (because $X \notin C$), we conclude that X' = 0 and, hence, $X = X(1-e)A \in Gen((1-e)A)$ as desired.

(1) and (3) imply (2): From (3), letting C = eAe, e' = 1 - e, B = e'Ae'and M = e'Ae, we may identify A with the matrix algebra $A = \begin{pmatrix} C & 0 \\ M & B \end{pmatrix}$ and C with $ind_C = \{X \in ind_A : Xe = X\} = \{X \in ind_A : Xe' = 0\}$. By corollary 2.3, the torsion radical associated with the split torsion pair (Gen(e'A), add(C))is given by t(X) = Xe'A, so that Xe'A is a direct summand of X, for every $X \in mod_A$. Let us fix a complete set of primitive orthogonal idempotents $\{e_1, ..., e_s\}$ of B = e'Ae', so that $e' = e_1 + ... + e_s$. Interpreting A-modules as triples, as in remark 2.4(2), we have that $e_iJ(A)e'A = (e_iJ(B)M, e_iJ(B), \mu)$ is a direct summand of $e_iJ(A) = (e_iM, e_iJ(B), \mu')$ in mod_A (where μ , μ' are the respective multiplication maps). This clearly implies that $e_iJ(B)M$ is a direct summand of e_iM in mod_C . We fix, for each *i*, a decomposition $e_iM = M'_i \oplus e_iJ(B)M$ in mod_C , and let $M' = \bigoplus_{1 \le i \le s} M'_i$. Then $e_iM' = M'_i$ for each *i*, and $M = M' \oplus J(B)M$ in mod_C . An easy induction shows that $J(B)M = J(B)M' + J(B)^kM$, for all k > 0. The nilpotency of J(B) yields J(B)M = J(B)M'. Since the left multiplication by an element of *B* gives an endomorphism of M_C , the equality J(B)M = J(B)M' implies that J(B)M is generated by M' in mod_C . But then $M_C = M' \oplus J(B)M$ is also generated by M' in mod_C . In order to prove that M_C is hereditary injective, it suffices to show that each $M'_i = e_iM'_C$ is hereditary injective.

Suppose that this is not the case and consider an epimorphism $g: N \twoheadrightarrow Z$, where N is an indecomposable summand of some M'_i and Z is a non-injective indecomposable C-module. Decomposing $M'_i = N \oplus N'$ in mod_C , we see that $e_i J(A) = N \oplus N' \oplus e_i J(B)A$ is a decomposition in mod_A , where the C-modules N, N' are viewed as A-modules and, by definition, $e_i J(B)A =$ $(e_i J(B)M, e_i J(B), \mu)$, with μ the multiplication map. We deduce an embedding $Ker(g) \oplus N' \oplus e_i J(B)A \hookrightarrow e_i J(A) \hookrightarrow e_i A$. The corresponding quotient $X = \frac{e_i A}{Ker(g) \oplus N' \oplus e_i J(B)A}$ has simple top, hence is indecomposable. We also have

$$XJ(A) = \frac{e_i J(A)}{Ker(g) \oplus N' \oplus e_i J(B)A} = \frac{N \oplus N' \oplus e_i J(B)A}{Ker(g) \oplus N' \oplus e_i J(B)A} \cong Z$$

Since Z is not injective in mod_C , the functor $Ext_C^1(-, Z)$ is non-zero. It is easily seen that this is equivalent to the existence of some simple C-module S such that $Ext_C^1(S, Z) \neq 0$. We fix a non-split exact sequence

$$0 \to Z \xrightarrow{\jmath} V \xrightarrow{p} S \to 0$$

in mod_C which, clearly, is also non-split in mod_A . By the above comments, the canonical inclusion $XJ(A) \hookrightarrow X$ induces an embedding $i : Z \longrightarrow X$. We thus have an amalgamated sum (pushout) diagram:

Since $(Gen(e'A), add(\mathcal{C}))$ is a split torsion pair, we have $W = W_1 \oplus W_2$, with $W_1 \in add(\mathcal{C}) = Gen(eA)$ (whence it is a *C*-module) and $W_2 \in Gen(e'A)$. Since $X \in Gen(e'A)$, the composition of u with the projection $W \longrightarrow W_1$ vanishes, so that $u(X) \subseteq W_2$. The obvious inequalities between composition lengths $l(X) \leq l(W_2) \leq l(W) = l(X) + 1$ lead to two cases:

1. Assume first that $l(W_2) = l(W) = l(X) + 1$. Then $W = W_2$ and $W_1 = 0$, so that $W \in Gen(e'A)$. But $w : W \longrightarrow S$ is non-zero, and $S \in C$. This is a contradiction.

2. Assume $l(X) = l(W_2) = l(W) - 1$. Identifying X with u(X), we have $X = W_2$ so that $W_1 \cong W/X \cong S$ and the above diagram becomes

for some $h: V \longrightarrow X$. In particular, $h \circ j = i$ and $p \circ j = 0$. On the other hand, since V is a C-module, we have $Im(h) \subseteq XeA \subseteq XJ(A) \cong Z$ because X has a simple top isomorphic to $S_i = \frac{e_iA}{e_iJ(A)}$. We then get a morphism $h': V \longrightarrow Z$ such that $i \circ h' = h$. But then $i = h \circ j = i \circ h' \circ j$ and, since i is a monomorphism, we get $h' \circ j = 1_Z$. This contradicts the fact that the upper sequence in the above diagram is not split.

In either case we have reached a contradiction. Hence each M'_i is hereditary injective. That completes the proof of the equivalence of (1), (2) and (3).

The last statement of the theorem follows from the fact that, if we identify $add(\mathcal{C})$ with the full subcategory mod_C of mod_A , then the minimal projective resolution of any $X \in \mathcal{C}$ is the same in mod_C and mod_A .

Given a complete set of primitive orthogonal idempotents $\mathcal{E} = \{e_1, ..., e_n\}$ of A, and a subset $\Sigma = \{e_{i_1}, ..., e_{i_r}\}$ of \mathcal{E} , we denote by e_{Σ} the sum $e_{i_1} + ... + e_{i_r}$. With this notation, the desired classification of the split torsion pairs with torsion-free class closed under quotients follows directly from our theorem.

Corollary 2.6. Let $\mathcal{E} = \{e_1, ..., e_n\}$ be a complete set of primitive orthogonal idempotents of A. There is a one-to-one correspondence between:

- The full subcategories C of ind_A closed under predecessors such that add(C) is an abelian exact subcategory of mod_A
- (2) The split torsion pairs in mod_A, with torsion-free class closed under quotients
- (3) The subsets $\Sigma \subseteq \mathcal{E}$ such that $(1 e_{\Sigma})Ae_{\Sigma}$ is a hereditary injective $e_{\Sigma}Ae_{\Sigma}$ module and $e_{\Sigma}A(1 - e_{\Sigma}) = 0$

3 Applications to Artin algebras

Throughout this section, we assume that our algebras are basic and connected Artin algebras. We denote by Q_A the (valued) quiver of A and by $(Q_A)_0$ the set of points of Q_A . The idempotent corresponding to a point $x \in (Q_A)_0$ is denoted by e_x , while we denote by P_x (or S_x) the corresponding indecomposable projective (or simple, respectively). For general facts about the module category of A, we refer the reader to [3].

A first consequence of our main theorem is the following combinatorial result:

Corollary 3.1. Let A be an algebra satisfying the equivalent conditions of the theorem. Then, for every arrow $y \to x$ in Q_A , with $y \in (Q_B)_0$ and $x \in (Q_C)_0$, the point x is a source in Q_C .

Proof. Since there exists an arrow $y \to x$ in Q_A , then $\frac{e_y J(A)e_x}{e_y J(A)^2 e_x} \neq 0$. Notice that $e_y J(A)e_x$ is identified with $e_y Me_x$ and $e_y J(A)^2 e_x$ with $e_y [J(B)M + MJ(C)]e_x$. Then $\frac{e_y Me_x}{e_y [J(B)M + MJ(C)]e_x} \neq 0$ and, in particular, $\frac{e_y Me_x}{e_y MJ(C)e_x} \neq 0$. This says that the simple C-module S_x is a direct summand of the top of the C-module $e_y M$ and, hence, also of $top(M_C)$. Since M_C is hereditary injective, we conclude that S_x is a simple injective C-module, so that x is a source in Q_C .

We now consider the case where \mathcal{C} is the left part \mathcal{L}_A of mod_A , that is, the full subcategory of ind_A consisting of those $X \in ind_A$ such that every predecessor of X has projective dimension at most one (see [5]). Thus, \mathcal{L}_A is closed under predecessors. The endomorphism algebra of the supporting projective of \mathcal{L}_A is denoted by A_λ and is called the **left support** of A (see [2] and [7]).

We recall that A is called **left supported** when $add(\mathcal{L}_A)$ is contravariantly finite in mod_A (see [2]). Many important classes of algebras are left supported such as, for instance, the laura algebras which are not quasi-tilted (see [2], [7]).

Corollary 3.2. Let A be an Artin algebra such that $add(\mathcal{L}_A)$ is an abelian exact subcategory of mod_A . Then:

- (1) The left support A_{λ} of A is hereditary
- (2) The algebra A is left supported
- (3) If, furthermore, the valued quiver of A has no oriented cycles, then $A = A_{\lambda}$. In particular, A itself is hereditary

Proof. (1) follows from the last statement of the theorem, and (2) follows from corollary 2.3(1). In order to prove (3), suppose that $A \neq A_{\lambda}$. There exists a point $x_0 \in (Q_A)_0$ such that $P_{x_0} \notin \mathcal{L}_A$. In particular, the radical $P_{x_0}J(A)$ of P_{x_0} admits an indecomposable summand R_{x_0} which is not in \mathcal{L}_A . Hence there exists a point $x_1 \in (Q_A)_0$ such that $P_{x_1} \notin \mathcal{L}_A$ and $Hom_A(P_{x_1}, R_x) \neq 0$. This yields a non-zero non-isomorphism $f_1 : P_{x_1} \longrightarrow P_{x_0}$. Repeating the process for x_1 instead of x_0 yields a point $x_2 \in (Q_A)_0$ such that $P_{x_2} \notin \mathcal{L}_A$ and there exists a non-zero non-isomorphism $f_2 : P_{x_2} \longrightarrow P_{x_1}$. Inductively, we get a sequence of non-zero non-isomorphisms between indecomposable projective modules ... $P_{x_n} \xrightarrow{f_n} P_{x_{n-1}} \dots \xrightarrow{f_2} P_{x_1} \xrightarrow{f_1} P_{x_0}$. Since $(Q_A)_0$ is finite, this sequence yields necessarily an oriented cycle in Q_A , which is a contradiction. □

We note that, if A_{λ} is hereditary, it does not follow in general that $add(\mathcal{L}_A)$ is an abelian exact subcategory of mod_A , as is shown by the following example.

Example 3.3. Let K be a field and A be the radical square zero K-algebra given by the quiver

Here $\mathcal{L}_A = \{P_1, P_2\}$ and its support is the hereditary K-algebra with quiver

 $1 \longleftarrow 2$

However, $add(\mathcal{L}_A)$ is not an abelian exact subcategory of mod_A because it does not contain the cokernel S_2 of the inclusion $P_1 \longrightarrow P_2$

Our final application is to local extensions of hereditary algebras. We recall that a triangular matrix algebra $A = \begin{pmatrix} H & 0 \\ M & R \end{pmatrix}$, where $_RM_H$ is an R - H-bimodule, is called a **local extension** of H in case R is a local algebra (see [6]). Taking R a skew field, we see that this notion generalizes that of a one-point extension. However, we are interested in the case where R is not a skew field, a hypothesis that we assume in the sequel. We denote by y the unique point in Q_R . For general facts about the module category of a local extension, we refer the reader to [6]

Lemma 3.4. Let $A = \begin{pmatrix} H & 0 \\ M & R \end{pmatrix}$ be a local extension of the hereditary algebra H. Then the left support A_{λ} is equal to H.

Proof. Let P_x be any indecomposable projective H-modules. The predecessors of P_x in ind_A are (projective) H-modules and, hence, $P_x \in \mathcal{L}_A$. On the other hand, the only other indecomposable projective P_y lies on an oriented cycle of projectives in ind_A . Therefore $y \notin (Q_{A_\lambda})_0$, because A_λ is quasi-tilted by [2][2.1] and hence triangular by [5]

It follows from the above lemma, or from [2][2.1], that we have an inclusion $\mathcal{L}_A \subseteq ind_H$. Our final result says exactly when equality holds:

Proposition 3.5. Let $A = \begin{pmatrix} H & 0 \\ M & R \end{pmatrix}$ be a local extension of the hereditary algebra H, where R is not a skew-field. The following statements are equivalent:

- (1) $add(\mathcal{L}_A)$ is an abelian exact subcategory of mod_A
- (2) $\mathcal{L}_{\mathcal{A}} = ind_H$
- (3) M_H is injective

Proof. (1) implies (3): By lemma 3.4, we have $H = A_{\lambda}$. Our main theorem 2.5 gives that M_H is injective.

(3) implies (2): From theorem 2.5 we get $\mathcal{C} = ind_H$. Also, for any $X \in ind_H$, we have $pd_A(X) \leq gl.dim(H) = 1$. Then $ind_H \subseteq add(\mathcal{L}_A)$, so that $\mathcal{L}_A = ind_H$

(2) implies (1): The hypothesis gives $mod_H = add(\mathcal{L}_A)$, and the statement follows at once.

Example 3.6. Let K be a field and let A be the K-algebra given by the quiver

with relations $\gamma^2 = 0$ and $\gamma \beta \alpha = 0$. Denoting the indecomposables by their Loewy series, the regular module A_A is given by:

Here, A is a local extension of the hereditary algebra H given by the quiver $1 \stackrel{\alpha}{\longleftarrow} 2$, taking $M_H = P_2 \oplus S_2$, which is an injective H-module. The hypothesis of proposition 3.5 is satisfied, and therefore $add(\mathcal{L}_A) = mod_H$ is an abelian exact subcategory of mod_A . Notice that if we put here C = H and $B = R = K[\gamma]/(\gamma^2)$, then $J(B)M \cong S_2$ so that, taking $M' = P_2$, we get the decomposition $M_C = M' \oplus J(B)M$ of the proof of theorem 2.5.

References

- ANDERSON, F.W.; FULLER, K.R.: "Rings and categories of modules", 2nd edition. Springer-Verlag (1992).
- [2] ASSEM, I.; COELHO, F.U.; TREPODE, S.: The left and right parts of a module category. Preprint.
- [3] AUSLANDER, M.; REITEN, I.; SMALO, S.O.: "Representation theory of Artin algebras". Cambridge Univ. Press 36, in Cambridge Studies in Advanced Mathematics. Cambridge (1995).
- [4] AUSLANDER, M.; SMALO, S.O.: Preprojective modules over Artin algebras. J. Algebra 66(1) (1980), 61-122.
- [5] HAPPEL, D.; REITEN, I.; SMALO, S.O.: "Tilting in abelian categories and quasitilted algebras". Mem. Amer. Math. Soc. 120(575) (1996), 473-526.

- [6] MARTINS, M.I.; DE LA PEÑA, J.A.: On local extensions of algebras. Comm. Algebra 27(3) (1999), 1017-1031.
- SKOWRONSKI, A.: On Artin algebras with almost all indecomposable modules of projective or injective dimension at most one. Cent. Eur. J. Math. 1(1) (2003), 108-122.