A note on the fundamental group of a one-point extension

I. Assem, J.C. Bustamante, D. Castonguay and C. Novoa

1. Introduction

In the representation theory of finite dimensional algebras over algebraically closed fields, the use of covering techniques, initiated by Gabriel, Riedtmann and others (see, for instance [3]) has shown the importance of the fundamental groups of bound quivers (see [6] for the definition). In this note, we consider an algebra A which is a one-point extension of another algebra B and the morphism of fundamental groups induced by the inclusion of (the bound quiver of) B into (that of) A. Our main result says that the cokernel of this morphism is a free group. We then deduce various consequences of this.

2. Preliminaries

- **2.1.** Algebras and quivers. By an algebra is always meant a basic and connected finite dimensional algebra over an algebraically closed field k, and by module is meant a finitely generated right module. For every algebra A there exists a (unique) quiver Q_A and (at least) a surjective morphism of algebras $\nu: kQ_A \longrightarrow A$ so that, setting $I_{\nu} = \text{Ker}\nu$, we have $A \simeq kQ_A/I_{\nu}$ (see [3]). The bound quiver (Q_A, I_{ν}) is then called a *presentation* of A. An algebra A is said to be *triangular* whenever Q_A has no oriented cycles. If x is a point in Q_A , we denote by e_x the corresponding idempotent and by $P_x = e_x A$ the corresponding indecomposable projective module.
- **2.2. Fundamental groups.** Let (Q, I) be a connected bound quiver. For the definitions and properties of the fundamental group $\pi_1(Q, I)$, we refer to $[\mathbf{6}, \mathbf{2}]$. A triangular algebra is called *simply connected* if, for every presentation (Q, I) of A, we have $\pi_1(Q, I) = 1$. On the other hand, to a given connected bound quiver (Q, I), one can associate a CW complex $\mathcal{B} = \mathcal{B}(Q, I)$ called the *classifying space* of (Q, I), and this construction behaves well with respect to homotopy, in particular one has $\pi_1(Q, I) \simeq \pi_1(\mathcal{B})$ (see $[\mathbf{5}]$). The fundamental group of a bound quiver (Q, I) affords the following description: let T be a maximal tree in Q, F be the free group with basis the set of all arrows of Q, and K be the normal subgroup of F generated by
 - 1. all the arrows in T; and

Subject classification: 16G20. Keywords and phrases: Fundamental groups, bound quivers, presentations of algebras.

2. all expressions of the form $(\beta_1 \beta_2 \cdots \beta_p)(\gamma_1 \gamma_2 \cdots \gamma_q)^{-1}$ when $\beta_1 \beta_2 \cdots \beta_p$ and $\gamma_1 \gamma_2 \cdots \gamma_q$ are two paths appearing in a minimal relation (in the sense of [6]).

Then, $\pi_1(Q, I) \simeq F/K$, see [5](3.2).

2.3. One-point extensions. Let A be an algebra, x be a source in Q_A , and $B = A/Ae_xA$. Letting $M = \text{rad}P_x$, the algebra A can be written in matrix form

$$A = \left[\begin{array}{cc} B & 0 \\ M & k \end{array} \right]$$

with the usual matrix addition, and the multiplication induced from the B-module structure of M. We say that A is a *one-point extension* of B, and write A=B[M]. Let (Q_A,I_{ν_A}) be a presentation of A, and (Q_B,I_{ν_B}) be the induced presentation of B. Let $Q^{(1)},\ldots Q^{(c)}$ be the connected components of Q_B , and $I^{(j)}_{\nu}=I_{\nu_B}\cap kQ^{(j)}$, for $1\leq j\leq c$. For each j, the embedding of $Q^{(j)}$ in Q_A induces a group morphism $\eta_j:\pi_1(Q^{(j)},I^{(j)}_{\nu})\longrightarrow \pi_1(Q_A,I_{\nu_A})$. Our aim is to compute the cokernel of the induced morphism

$$\eta = (\eta_j)_j : \prod_{j=1}^c \pi_1(Q^{(j)}, I_{\nu}^{(j)}) \longrightarrow \pi_1(Q_A, I_{\nu_A}).$$

Following [2](2.1), we denote by x^{\rightarrow} the set of all the arrows of Q_A starting in x. Let \approx be the least equivalence on x^{\rightarrow} such that $\alpha \approx \beta$ whenever there exists a minimal relation $\sum_{i=1}^{r} \lambda_i w_i$ such that $w_1 = \alpha w_1'$, $w_2 = \beta w_2'$. We denote by $[\alpha]_{\nu_A}$ the equivalence class of α , and by $t(\nu_A)$ the number of equivalence classes $[\alpha]_{\nu_A}$ in x^{\rightarrow} . Finally, we denote by s = s(x) the number of indecomposable direct summands of M. It is shown in [2] (2.2) that $c \leq t(\nu_A) \leq s$.

3. The results

3.1. Theorem. Let A = B[M] be given an arbitrary presentation (Q_A, I_{ν_A}) . Then the cokernel of the morphism $\eta: \prod_{j=1}^c \pi_1(Q^{(j)}, I_{\nu}^{(j)}) \longrightarrow \pi_1(Q_A, I_{\nu_A})$ induced by the inclusion is the free group $L_{t(\nu_A)-c}$ in $t(\nu_A)-c$ generators.

Proof: Clearly, if δ_1 is an arrow from x to a point in $Q^{(1)}$, and δ_2 is an arrow from x to a point in $Q^{(2)}$, then $\delta_1 \not\approx \delta_2$. We may then assume, without loss of generality that B is connected, that is, c = 1. We set $t = t(\nu_A)$, and let $\{\alpha_1, \alpha_2, \dots \alpha_t\}$ be a complete set of representatives of the classes $[\alpha]_{\nu}$. For $i \in \{1, 2, \dots t\}$, we set $[\alpha_2]_{\nu} = a_i$. Our aim is to show that the cokernel of η is the free group L_{t-1} having as basis the set $\{a_2, \dots a_t\}$.

Let T_B be a maximal tree in Q_B , and F_B , K_B as in (2.2). Denote by T_A the maximal tree in Q_A obtained from T_B by adding the arrow α_1 and the vertex x. Denote again by F_A , K_A the groups as in (2.2). We have $\pi_1(Q_B, I_{\nu_B}) \simeq F_B/K_B$, $\pi_1(Q_A, I_{\nu_A}) \simeq F_A/K_A$, and the morphism $\eta: F_B/K_B \longrightarrow F_A/K_A$ is given by $\alpha K_B \longmapsto \alpha K_A$ (where α is an arrow in Q_B).

We define a group morphism $\tilde{\varphi}: F_A \longrightarrow L_{t-1}$ as follows. For an arrow α in Q_A , we set

$$\tilde{\varphi}(\alpha) = \begin{cases} a_i & \text{if } \alpha \approx \alpha_i \text{ for some } i \in \{2, \dots t\}, \\ 1 & \text{otherwise.} \end{cases}$$

We claim that $\tilde{\varphi}(K_A) = 1$. Clearly, if α is an arrow in T_A , then $\tilde{\varphi}(\alpha) = 1$. Let $\beta_1 \beta_2 \cdots \beta_p$ and $\gamma_1 \gamma_2 \cdots \gamma_q$ be two paths in (Q_A, I_{ν_A}) appearing in some minimal relation. If the source of this relation is not x, then it lies in Q_B so that

$$\tilde{\varphi}(\beta_1\beta_2\cdots\beta_p)=1=\tilde{\varphi}(\gamma_1\gamma_2\cdots\gamma_q)$$

If, on the other hand, the source is x, then $\beta_1, \ \gamma_1 \in x^{\rightarrow}$. Moreover, there exists $i_0 \in \{1, 2, \dots t\}$ such that $[\beta_1]_{\nu} = [\gamma_1]_{\nu} = a_{i_0}$. Therefore

$$\tilde{\varphi}(\beta_1 \beta_2 \cdots \beta_p) = \tilde{\varphi}(\beta_1) \tilde{\varphi}(\beta_2 \cdots \beta_p)
= \tilde{\varphi}(\gamma_1) \tilde{\varphi}(\gamma_2 \cdots \gamma_q)
= \tilde{\varphi}(\gamma_1 \gamma_2 \cdots \gamma_q)$$

This establishes our claim. We infer the existence of a group morphism (which is in fact an epimorphism) $\varphi: F_A/K_A \longrightarrow L_{t-1}$ defined by

$$\varphi(\alpha K_A) = \begin{cases} a_i & \text{if } \alpha \approx \alpha_i \text{ for some } i \in \{2, \dots t\}, \\ 1 & \text{otherwise.} \end{cases}$$

(where α denotes an arrow in Q_A).

Clearly, we have $\varphi \eta = 1$. Now, assume there exist a group morphism $\varphi' : F_A/K_A \longrightarrow G$ such that $\varphi' \eta = 1$. We define $\bar{\varphi} : L_{t-1} \longrightarrow G$ by $a_i \longmapsto \varphi'(\alpha K_A)$, where $[\alpha]_{\nu} = a_i$. We must verify that $\varphi'(\alpha K_A)$ does not depend on the choice of the representative α . Indeed, if $[\beta]_{\nu} = [\gamma]_{\nu}$, we may assume without loss of generality that there exists two paths $\beta \beta_2 \cdots \beta_p$, and $\gamma \gamma_2 \cdots \gamma_q$ in Q_A appearing in the same minimal relation. But then

$$\varphi'(\beta K_A) = \varphi'(\beta K_A) \varphi' \eta(\beta_2 \cdots \beta_p K_B)
= \varphi'(\beta K_A) \varphi'(\beta_2 \cdots \beta_p K_A)
= \varphi'(\beta \beta_2 \cdots \beta_p K_A)
= \varphi'(\gamma \gamma_2 \cdots \gamma_q K_A)
= \varphi'(\gamma K_A) \varphi'(\gamma_2 \cdots \gamma_q K_A)
= \varphi'(\gamma K_A) \varphi' \eta(\gamma_2 \cdots \gamma_q K_B)
= \varphi'(\gamma K_A)$$

Thus, $\bar{\varphi}$ is well-defined. Clearly $\bar{\varphi}\varphi = \varphi'$, and $\bar{\varphi}$ is uniquely determined (because φ is an epimorphism). This completes the proof.

3.2. Corollary [2](2.3). Let A = B[M] be given by an arbitrary presentation (Q_A, I_{ν_A}) , and Z be any abelian group. There exists an exact sequence of abelian groups

$$0 \longrightarrow Z^{t(\nu_A)-c} \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\pi_1(Q_A, I_{\nu_A}), Z) \xrightarrow{\operatorname{Hom}_{\mathbb{Z}}(\eta, Z)} \prod_{j=1}^{c} \operatorname{Hom}_{\mathbb{Z}}(\pi_1(Q^{(j)}, I_{\nu}^{(j)}), Z)$$

3.3. Corollary. Let A = B[M]. There exists a presentation (Q_A, I_{μ_A}) such that the cokernel of the morphism $\eta: \prod_{j=1}^c \pi_1(Q^{(j)}, I_{\mu}^{(j)}) \longrightarrow \pi_1(Q_A, I_{\mu_A})$ is the free group L_{s-c} in s-c generators.

Proof: By [2](2.2), there exists a presentation (Q_A, I_{μ_A}) such that $t(\mu) = s$.

3.4. Corollary [2](2.6). Let A be simply connected. Then all sources of Q_A are separating (see for instance [2]).

Proof: Since A is simply connected, it follows from the previous result that s = c.

3.5. Corollary. Let A = B[M] and (Q_A, I_{μ_A}) be a presentation of A as in corollary 3.3. If $\pi_1(Q_A, I_{\mu_A})$ is finite, then M is a separated module

Proof: If this is not the case, then $L_{s-c} \neq 1$ and, since the short exact sequence $1 \longrightarrow \operatorname{Ker} \varphi \longrightarrow \pi_1(Q_A, I_{\mu_A}) \xrightarrow{\varphi} L_{s-c} \longrightarrow 1$ splits (because L_{s-c} is a free group), we get $\pi_1(Q_A, I_{\mu_A}) \simeq L_{s-c} \ltimes \operatorname{Ker} \varphi$, which is infinite.

3.6. Corollary. Let A = B[M] be given an arbitrary presentation (Q_A, I_{ν_A}) and assume B to be a direct product of simply connected algebras. Then

- a) $\pi_1(Q_A, I_{\nu_A}) \simeq L_{t(\nu_A)-c}$, and
- b) A is simply connected if and only if M is separated.

Proof: Since a) is clear we only prove b): By definition, M is separated if and only if s = c. Moreover, it follows from [2](2.2) that s = c if and only if $t(\nu_A) = c$ for every presentation (Q_A, I_{ν_A}) . Finally, using a) one can see that this holds if and only if A be simply connected.

Note that the sufficiency of b) was proven in [2](2.5), [7](2.3).

We now suppose A to be triangular and schurian (that is, for every two vertices x, y of Q_A , we have $\dim_k e_x A e_y \leq 1$). In this case, the fundamental group does not depend on the presentation, so it can unambiguously be denoted by $\pi_1(A)$. Moreover, the classifying space \mathcal{B} of (Q_A, I_{ν_A}) is a simplicial complex [4]. We denote by $\mathrm{SH}_1(A)$ the first simplicial homology group of A, and recall that $\mathrm{SH}_1(A)$ is the abelianisation of $\pi_1(A)$.

3.7. Corollary. Let A = B[M] be a triangular schurian algebra, and $B_1, \ldots B_c$ the connected components of B. Then, there exists an exact sequence of abelian groups

$$\prod_{j=1}^{c} \operatorname{SH}_{1}(B_{j}) \xrightarrow{\eta_{*}} \operatorname{SH}_{1}(A) \longrightarrow \mathbb{Z}^{s-c} \longrightarrow 0$$

Furthermore, if A contains no quasi-crowns (in the sense of [1]), then η_* is a monomorphism.

Proof: By 3.2 there exists, for each abelian group Z, an exact sequence of abelian groups

$$0 \longrightarrow Z^{s-c} \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\pi_1(A), Z) \xrightarrow{\operatorname{Hom}_{\mathbb{Z}}(\eta, Z)} \prod_{j=1}^{c} \operatorname{Hom}_{\mathbb{Z}}(\pi_1(B_j), Z)$$

By [1](3.8), the absence of quasi-crowns forces $\operatorname{Hom}_{\mathbb{Z}}(\eta, Z)$ to be an epimorphism. Since the above sequence may be rewritten as

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^{s-c}, Z) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\operatorname{SH}_{1}(A), Z) \xrightarrow{\operatorname{Hom}_{\mathbb{Z}}(\eta_{*}, Z)} \prod_{j=1}^{c} \operatorname{Hom}_{\mathbb{Z}}(\operatorname{SH}_{1}(B_{j}), Z)$$

where η_* is induced from η by abelianising, replacing Z by the injective cogenerator \mathbb{Q}/\mathbb{Z} yields the result.

Acknowlodgements

The first author gratefully acknowledges partial financial support from NSERC of Canada. The second author gratefully acknowledges financial support from FAPESP, Brazil.

References

- [1] I. Assem, D. Castonguay, E. N. Marcos, and S. Trepode. Schurian strongly simply connected algebras an multiplicative bases. preprint, 2004.
- [2] I. Assem and J.A. de la Peña. The fundamental groups of a triangular algebra. Comm. Algebra, 24(1):187-208, 1996.
- [3] K. Bongartz and P. Gabriel. Covering spaces in representation theory. *Invent. Math*, 65(3):331–378, 1981-1982.
- [4] J. C. Bustamante. On the fundamental group of a schurian algebra. Comm. Algebra, 30(11):5305-5327, 2002.
- [5] J. C. Bustamante. The classifying space of a bound quiver. To appear in J. Algebra, 2004.
- [6] R. Martínez-Villa and J.A. de la Peña. The universal cover of a quiver with relations. J. Pure Appl. Algebra, 30:873-887, 1983.
- [7] A. Skowroński. Simply connected algebras and Hochschild cohomologies. In Proceedings of the sixth international conference on representation of algebras, number 14 in Ottawa-Carleton Math. Lecture Notes Ser., pages 431–448, Ottawa, ON, 1992.

Ibrahim Assem.

Département de Mathématiques

Université de Sherbrooke.

2500 Boulevard de l'Université. Sherbrooke J1K 2R1, Québec, Canada.

Ibrahim. Assem@USherbrooke.ca

Juan Carlos Bustamante.

Instituto de Matemática e Estatística

Universidade de São Paulo

1010, Rua do Matão - Cidade Universitária, 05508-090 São Paulo, Brasil. bustaman@ime.usp.br

Diane Castonguay.

Instituto de Matemática e Estatística

Universidade de São Paulo 1010, Rua do Matão - Cidade Universitária, 05508-090 São Paulo, Brasil. diane@ime.usp.br

Cristian Novoa.

Departameto de Matemática e Física Universidade Católica de Goiás. Av. Universitária 1440, Setor Universitário, Goiânia Goiás, Brasil. cristiannovoa@netscape.net