A NOTE ON AISLES IN A TRIANGULATED KRULL SCHMIDT CATEGORY.

IBRAHIM ASSEM, MARÍA JOSÉ SOUTO SALORIO, AND RITA ZUAZUA

ABSTRACT. We assume that T is a triangulated Hom-finite Krull-Schmidt k-category and that M is a strong generator such that $Hom_{\mathcal{T}}(M,M[j])=0$, for all $j\neq 0$. We show that the suspended subcategory \mathcal{U}_M generated by M is an aisle. Further, if T has almost split triangles then the orthogonal \mathcal{U}_M^{\perp} equals the co-aisle $\tau_M\mathcal{U}$ cogenerated by the Auslander-Reiten translate τM of M.

INTRODUCTION

The notion of triangulated category (see [V]) has proved very useful in the representation theory of algebras. In particular, there is a strong relationship between the study of t-structures and tilting theory (see, for instance, [KV, P, H, ST]). In [KV](1.1), Keller and Vossieck consider certain subcategories called aisles, and show that, if \mathcal{U} is an aisle, then $(\mathcal{U}_M, \mathcal{U}_M^{\perp}[1])$ is a t-structure, and conversely any t-structure is of this form.

In this note, we give a construction procedure for aisles and hence for t-structures. We recall that, for instance, it was shown in [ST] that every perfect complex generates a t-structure on $\mathbf{D}^b(mod-A)$, where A is a Noether algebra (see also [KV](5.1)).

We say that an object M in a triangulated category is a strong generator if T equals the smallest triangulated subcategory containing M and closed under direct summands. We prove the following theorem:

Theorem: Let k be a field, \mathcal{T} be a triangulated Hom-finite Krull-Schmidt k-category and M be a strong generator such that $Hom_{\mathcal{T}}(M, M[j]) = 0$, for all $j \neq 0$. Then the suspended subcategory \mathcal{U}_M generated by M is an aisle in \mathcal{T} . Dually, the cosuspended subcategory $M\mathcal{U}$ cogenerated by M is a co-aisle in \mathcal{T} .

We next consider the case where \mathcal{T} has almost split triangules. A necessary and sufficient condition for the existence of such triangles is given in [RV]. We denote by τ the Auslander-Reiten translation in \mathcal{T} .

Corollary: Let \mathcal{T} and M be as in the theorem, and assume that \mathcal{T} has almost split triangles. Then $(\mathcal{U}_M)^{\perp} =_{\tau M} \mathcal{U}$ and $\mathcal{U}_M =^{\perp} (_{\tau M} \mathcal{U})$.

AMS subject classification 18E30.

The first and the last authors gratefully acknowledge support from the NSERC of Canada and the CONACYT of Mexico (proj. J38611-E), respectively.

1. The theorem.

1.1. Following [KV], we say that a full subcategory $\mathcal U$ of a triangulated category $\mathcal T$ is a suspended subcategory if $\mathcal U[1]\subset\mathcal U,$ and it is closed under extensions (that is, if $X \to Y \to Z \to X[1]$ is a triangle in T and $X, Z \in \mathcal{U}$, then Y belongs to \mathcal{U}).

A suspended subcategory $\mathcal U$ is called an aisle in $\mathcal T$ if the inclusion functor $\mathcal{U} \to \mathcal{T}$ has a right adjoint functor $t_{\mathcal{U}}: \mathcal{T} \to \mathcal{U}$ (see [KV](1.1)). We

define dually co-suspended subcategories and co-aisles.

Given an object M in \mathcal{T} , we denote by \mathcal{U}_M (or ${}_M\mathcal{U}$) the smallest suspended (or cosuspended, respectively) subcategory of $\mathcal T$ containing M.

1.2. Let M be an object in a triangulated category $\mathcal T.$ We define a sequence of classes of objects $(\mathcal{E}_i)_{i\geq 0}$ of \mathcal{T} as follows. Let $\mathcal{E}_0 = add(\bigoplus_{i\in\mathbb{Z}} M[i])$ consist of all the summands of finite sums of copies of translates of M. Assume that $i\geq 1$, and that $\mathcal{E}_0,\mathcal{E}_1,\cdots,\mathcal{E}_{i-1}$ are already known. The class \mathcal{E}_i consists of all the objects X which are direct summands of objects X' such that there is a triangle $X_0 \to X' \to X_{i-1} \to X_0[1]$, where X_0 lies in \mathcal{E}_0 and X_{i-1} lies in \mathcal{E}_{i-1} . It is not hard to show that $\cup_{i\geq 0}\mathcal{E}_i$ is the smallest triangulated subcategory of \mathcal{T} closed under direct summands and containing M.

We say that M is a strong generator of T if $T = \bigcup_{i \geq 0} \mathcal{E}_i$.

For instance, let T' be a triangulated compactly generated category and M be a compact generator of T', then M is a strong generator of the full subcategory consisting of the compact objects (see [N]).

1.3. Proof of our theorem: We first prove the following claim: for every $X \in \mathcal{T}$, there is a finite set $F_X \subset \mathbb{Z}$ such that $Hom_{\mathcal{T}}(M[l], X) = 0$, for all $l \notin F_X$. Indeed, assume $X = \bigoplus_{i \in F} M_i^{(F_i)} \in \mathcal{E}_0$ where $M_i \simeq M[i]$ with F_i and F finite subsets of \mathbb{Z} . Then, $Hom_{\mathcal{T}}(M[t],X)=Hom_{\mathcal{T}}(M[t],\oplus_{i\in F}M_i^{(F_i)})=$ 0 if $t \notin F$, using the hypothesis on M. This shows our claim for X (and hence for its direct summands). Assume now j > 0 and $X \in \mathcal{E}_j$. Then there is a triangle $X_0 \xrightarrow{r} X \xrightarrow{s} X_{j-1} \to X_0[1]$ with $X_0 \in \mathcal{E}_0$ and $X_{j-1} \in \mathcal{E}_{j-1}$.

Let $t \in \mathbb{Z}$ and $f \in Hom_{\mathcal{T}}(M[t], X)$. If sf = 0, there exists a morphism $h: M[t] \to X_0$ such that rh = f. But we know that there are only finitely many indices l such that $Hom_{\mathcal{T}}(M[l], X_0) \neq 0$. On the other hand, the induction hypothesis says that we have only finitely many indices l such that $sf \in Hom_{\mathcal{T}}(M[l], X_{j-1})$ is non-zero. Therefore, the set $\{l \in \mathbb{Z} \mid Hom_{\mathcal{T}}(M[l], X_j) \neq 0\}$ is finite. If now Y is a direct summand of X as before, then $Hom_{\mathcal{T}}(M[l],Y)$ is a direct summand of $Hom_{\mathcal{T}}(M[l],X)$. This establishes our claim.

For an $l \in \mathbb{Z}$, let $S_l = dim_k Hom_{\mathcal{T}}(M[l], X)$ and $U_0 = \bigoplus_{l \in F_X \cap \mathbb{N}} M[l]^{S_l}$. Then the induced morphism

$$Hom_{\mathcal{T}}(-,U_0)_{|_{U_M}} \to Hom_{\mathcal{T}}(-,X)_{|_{U_M}}$$

is an epimorphism. Applying [KV](1.3) yields that \mathcal{U}_M is an aisle in \mathcal{T} . The second statement is proved dually. \square

2. The corollary

2.1. We now assume that the triangulated category \mathcal{T} has almost split triangles, or equivalently, that there is a triangulated equivalence $\tau:\mathcal{T}\to\mathcal{T}$ and an isomorphism, called the Auslander-Reiten formula,

$$\beta_{X,Y}: DHom_{\mathcal{T}}(X, Y[1]) \to Hom_{\mathcal{T}}(Y, \tau X),$$

functorial in both variables, X, Y in \mathcal{T} (see [RV] for details.).

An example of such a situation is the case of $D^b \pmod{A}$, the derived category of bounded complexes of finitely generated (right) A-modules, where A is a finite dimensional k-algebra with finite global dimension.

For a full subcategory \mathcal{U} of \mathcal{T} , we denote by \mathcal{U}^{\perp} (or $^{\perp}\mathcal{U}$) the full subcategory consisting of the objects $X \in \mathcal{T}$ such that $Hom_{\mathcal{T}}(-,X)_{|_{\mathcal{U}}} = 0$ (or $Hom_{\mathcal{T}}(X,-)_{|_{\mathcal{U}}} = 0$, respectively).

2.2. The following lemma seems to be well-known. We provide its proof for the convenience of the reader.

Lemma: The aisle \mathcal{U}_M coincides with the full subcategory consisting of the objects X such that $Hom_{\mathcal{T}}(M[i], X) = 0$ for all i < 0.

Proof: Let S be the full subcategory of T consisting of the objects X verifying the condition of the statement. Then S is closed under extensions, direct summands, positive translations and M lies in S. Hence $\mathcal{U}_M \subseteq S$.

Let $X \in \mathcal{S}$, and consider the triangle $N \to X \to B \to N$ [1] given by the definition of aisle. Applying the cohomological functor $Hom_{\mathcal{T}}(M,-)$ to the above triangle, yields $Hom_{\mathcal{T}}(M[j],B)=0$ for all j<0, because $N,X\in\mathcal{S}$. However, $Hom_{\mathcal{T}}(M[j],B)=0$ for all $j\geq 0$, because $B\in\mathcal{U}_M^{\perp}$. Since M is a strong generator, B=0. Hence $X\simeq N$ lies in \mathcal{U}_M . \square

2.3. **Proof of our corollary:** Applying the above Lemma and the Auslander-Reiten formula, we get that X belongs to \mathcal{U}_M if and only if, for all $j \leq 0$, $Hom_{\mathcal{T}}(X, (\tau M)[j]) \cong Hom_{\mathcal{T}}(M[j], X[1]) = 0$. This means, if and only if $X \in {}^{\perp}(_{\tau M}\mathcal{U})$ (see [ST] (2.3)). The second statement is obtained dually. \square

REFERENCES

- [ABM] Assem I., Beligiannis, A. and Marmaridis, N.: Right triangulated categories with right semi-equivalences, Can. Math. Soc. Conf. Proc., 24 (1998), pp. 17–37.
- [H] Happel, D.: Triangulated categories in the representation theory of finitedimensional algebras. London Mathematical Society Lecture Notes, 119 (1988).
- [KV] Keller, B. and Vossieck, D.: Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, pp. 239-253.
- [P] Parthasarathy, R.: t-structures dans la catégorie dérivée associée aux représentations d'un carquois, C. R. Acad. Sci. Paris 304, (1987), pp.355-357.
- [N] Neeman, A.: Triangulated categories. Annals of Mathematical Studies, Princeton University Press (2001).
- [RV] Reiten, I. and Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15, no. 2 (2002) pp. 295-366.
- [ST] Souto, M.J.; Trepode, S.: On t-structures and tilting theory, Communications in Algebra. vol. 31, n 12, (2003), 6093-6114.

(I. A.) Univ. de Sherbrooke, Québec, Canada. ibrahim.assem@usherbrooke.ca (M.J.S.S.) Univ. da Coruña. C. Elviña, 15071. A Coruña, España. mariaj@udc.es (R. Z.) Instituto de Matemáticas. Morelia. México. zuazua@matmor.unam.mx